Part Number Hot Search : 
78MXX R5505 CY7C136 GB15JVD RT9139 BR1020 74HC161D 24C08
Product Description
Full Text Search
 

To Download IRFPS29N60L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFPS29N60L  smps mosfet hexfet   power mosfet features and benefits ? 

 
 


 
   


   ?  
 

 



  ? 
!
  

 
  ? "
 
  
 

 
 
   2/6/03 www.irf.com 1 applications ? 
  
 
#$ ? % 


$ 
 ? &   
$ 
 ? # 
'   
   super - 247? v dss r ds(on) typ. trr typ. i d 600v 175m ? 130ns 29a absolute maximum ratings parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 29 i d @ t c = 100c continuous drain current, v gs @ 10v 18 a i dm pulsed drain current  110 p d @t c = 25c power dissipation 480 w linear derating factor 3.8 w/c v gs gate-to-source voltage 30 v dv/dt peak diode recovery dv/dt  12 v/ns t j operating junction and -55 to + 150 t stg storage temperature range c soldering temperature, for 10 seconds 300 (1.6mm from case ) mounting torque, 6-32 or m3 screw 1.1(10) nm (lbfin) diode characteristics symbol parameter min. typ. max. unit s conditions i s continuous source current ??? ??? 29 mosfet symbol (body diode) a showing the i sm pulsed source current ??? ??? 110 integral reverse (body diode)   p-n junction diode. v sd diode forward voltage ??? ??? 1.5 v t j = 25c, i s = 29a, v gs = 0v  t rr reverse recovery time ??? 130 190 ns t j = 25c, i f = 29a ??? 240 360 t j = 125c, di/dt = 100a/s  q rr reverse recovery charge ??? 630 950 nc t j = 25c, i s = 29a, v gs = 0v  ??? 1820 2720 t j = 125c, di/dt = 100a/s  i rrm reverse recovery current ??? 9.4 14 a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld)

2 www.irf.com    repetitive rating; pulse width limited by max. junction temperature. (see fig. 11)   starting t j = 25c, l = 1.5mh, r g = 25 ? , i as = 29a. (see figure 12a)  i sd 29a, di/dt 560a/s, v dd v (br)dss , t j 150c.  pulse width 300s; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . c oss eff.(er) is a fixed capacitance that stores the same energy as c oss while v ds is rising from 0 to 80% v dss . static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 600 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.53 ??? v/c r ds(on) static drain-to-source on-resistance ??? 175 210 m ? v gs(th) gate threshold voltage 3.0 ??? 5.0 v i dss drain-to-source leakage current ??? ??? 50 a ??? ??? 2.0 ma i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 0.86 ??? ? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 15 ??? ??? s q g total gate charge ??? ??? 220 q gs gate-to-source charge ??? ??? 67 nc q gd gate-to-drain ("miller") charge ??? ??? 96 t d(on) turn-on delay time ??? 34 ??? t r rise time ??? 100 ??? ns t d(off) turn-off delay time ??? 66 ??? t f fall time ??? 54 ??? c iss input capacitance ??? 6160 ??? c oss output capacitance ??? 530 ??? c rss reverse transfer capacitance ??? 44 ??? pf c oss eff. effective output capacitance ??? 250 ??? c oss eff. (er) effective output capacitance ??? 190 ??? (energy related) avalanche characteristics symbol parameter typ. units e as si n gl e p u l se a va l anc h e e ner gy  ??? mj i ar a va l anc h e c urrent   ??? a e ar r epet i t i ve a va l anc h e e ner gy  ??? mj thermal resistance symbol parameter typ. units r jc junction-to-case ??? r cs case-to-sink, flat, greased surface 0.24 c/w r ja junction-to-ambient ??? v ds = v gs , i d = 250a v ds = 600v, v gs = 0v v ds = 480v, v gs = 0v, t j = 125c conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 17a  v gs = 30v f = 1mhz, open drain conditions v ds = 50v, i d = 17a v gs = -30v i d = 29a v ds = 480v v gs = 10v, see fig. 7 & 15  v dd = 300v i d = 29a r g = 4.3 ? v gs = 10v, see fig. 11a & 11b  v gs = 0v v ds = 25v ? = 1.0mhz, see fig. 5 29 48 max. 570 v gs = 0v,v ds = 0v to 480v  40 max. 0.26 ???

www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 25c vgs top 15v 10v 9.0v 7.0v 7.0v 5.5v 5.0v bottom 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 150c vgs top 15v 10v 9.0v 7.0v 7.0v 5.5v 5.0v bottom 4.5v 4 6 8 10 v gs , gate-to-source voltage (v) 0.01 0.10 1.00 10.00 100.00 1000.00 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 50v 20s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 28a v gs = 10v

4 www.irf.com fig 5. typical capacitance vs. drain-to-source voltage fig 8. typical source-drain diode forward voltage fig 7. typical gate charge vs. gate-to-source voltage fig 6. typ. output capacitance stored energy vs. v ds 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 100 200 300 400 500 600 700 v ds, drain-to-source voltage (v) 0 5 10 15 20 25 30 35 40 e n e r g y ( j ) 0 40 80 120 160 200 240 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 480v vds= 300v vds= 150v i d = 28a 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v

www.irf.com 5 fig 9. maximum safe operating area fig 10. maximum drain current vs. case temperature   
 1     0.1 %            fig 11a. switching time test circuit + - v ds 90% 10% v gs t d(on) t r t d(off) t f fig 11b. switching time waveforms 25 50 75 100 125 150 t c , case temperature (c) 0 5 10 15 20 25 30 i d , d r a i n c u r r e n t ( a ) 1 10 100 1000 10000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 150c single pulse

6 www.irf.com fig 12. maximum effective transient thermal impedance, junction-to-case fig 13. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 2.0 3.0 4.0 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response )

www.irf.com 7 fig 14a. maximum avalanche energy vs. drain current fig 14c. unclamped inductive waveforms d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 15a. gate charge test circuit fig 15b. basic gate charge waveform fig 14b. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v q g q gs q gd v g charge   25 50 75 100 125 150 starting t j , junction temperature (c) 0 200 400 600 800 1000 1200 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 13a 18a bottom 29a

8 www.irf.com p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 16. for n-channel hexfet   power mosfets
  
     
              ?     ?  ?    !" ## ? $  
%! !%   ?  &' !  ? ( !)  ?  &* ! %!   


www.irf.com 9 data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 2/03 super to-247 ? package is not recommended for surface mount application. super-247? (to-274aa) package outline b ? 1.60 [.063] 12 0.25 [.010] ba 3 0.13 [.005] 2.35 [.092] 1.65 [.065] 2.15 [.084] 1.45 [.058] 5.50 [.216] 4.50 [.178] e e 3x 1.60 [.062] 1.45 [.058] 16.10 [.632] 15.10 [.595] 20.80 [.818] 19.80 [.780] 14.80 [.582] 13.80 [.544] 4.25 [.167] 3.85 [.152] 5.45 [.215] 1.30 [.051] 0.70 [.028] 13.90 [.547] 13.30 [.524] 16.10 [.633] 15.50 [.611] 4 0.25 [.010] ba 4 3.00 [.118] 2.00 [.079] a 2x r max. section e-e 2x 1.30 [.051] 1.10 [.044] 3x 1. dimens ioning and t ole rancing per as me y14.5m-1994. 2. dimensions are s hown in millime t ers [inche s] 3. cont r ol l ing dime ns ion: mil l ime t e r not es : 4. out line conf orms t o jedec out line t o-274aa 3 - s ource 2 - drain 1 - gat e 4 - drain 3 - emitter 4 - collector 1 - gat e 2 - collector l e ad as s i gnme nt s mos f e t i gb t c logo assembly lot code example: this is an irfps37n50a with international rectifier irfps37n50a a8b9 0020 date code part number top (yyww) yy = year ww = week assembly lot code a8b9 super-247? (to-274aa)part marking information


▲Up To Search▲   

 
Price & Availability of IRFPS29N60L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X